34TH ANNUAL INTERNATIONAL PHOSPHATE FERTILIZER & SULFURIC ACID TECHNOLOGY CONFERENCE

Sheraton Sand Key Resort Clearwater Beach, Florida June 11 - 12, 2010

Low Temperature SO₂ Oxidation Catalyst

Girish Srinivas Steven Gebhard, P.E. Will Spalding Mike Looker

TDA Research Inc. 4663 Table Mountain Drive Golden, CO 80403

> *303-940-2321 *gsrinivas@tda.com

Abstract:

TDA is developing a Cs-V₂O₅/SiO₂ based catalyst for SO₂ oxidation that contains a proprietary promoter that allows it to operate at temperatures as low as 340°C when used in the 4th bed of the SO₂ converter in a sulfuric acid plant. Figure 1 shows the conversion possible with TDA's low temperature catalyst compared to a conventional SO₂ oxidation catalyst. By using TDA's SO₂ oxidation catalyst and at 340°C. operating the maximum thermodynamic conversion limit is 99.89%. Figure 2 shows that we obtained 99.6% experimentally under 4th bed conditions, which is substantially higher than the 98.8% measured using a commercial catalyst at ~400°C. Figure 3 shows that no deactivation was observed over the course of 900 hours of laboratory testing (again 4th bed conditions) for two separate tests with the same catalyst.

Figure 1. Conventional and TDA SO₂ oxidation catalysts compared with equilibrium limit.

With funding from the Department of Energy, TDA synthesized and tested a series of catalysts and compared their activities to several commercial catalysts. We are currently optimizing our catalyst formulation and making reaction rate and other kinetic measurements. We will scale up the catalyst and carry out bench scale demonstrations with the scaled up formulations.

Figure 2. Activity vs. temperature for TDA and commercial catalysts.

Figure 3. Two 900 hour lifetime tests with TDA's catalyst.